3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections

  • Authors:
  • K. Sakuma;P. S. Andry;C. K. Tsang;S. L. Wright;B. Dang;C. S. Patel;B. C. Webb;J. Maria;E. J. Sprogis;S. K. Kang;R. J. Polastre;R. R. Horton;J. U. Knickerbocker

  • Affiliations:
  • IBM Research Division, IBM Tokyo Research Laboratory, Yamato-shi, Kanagawa-ken, Japan;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;University of Illinois Urbana-Champaign, Urbana, Illinois;IBM Systems and Technology Group, Essex Junction, Vermont;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York;IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York

  • Venue:
  • IBM Journal of Research and Development
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Three-dimensional (3D) integration using through-silicon vias (TSVs) and low-volume lead-free solder interconnects allows the formation of high signal bandwidth, fine pitch, and short-distance interconnections in stacked dies. There are several approaches for 3D chip stacking including chip to chip, chip to wafer, and wafer to wafer. Chip-to-chip integration and chip-to-wafer integration offer the ability to stack known good dies, which can lead to higher yields without integrated redundancy. In the future, with structure and process optimization, wafer-to-wafer integration may provide an ultimate solution for the highest manufacturing throughput assuming a high yield and minimal loss of good dies and wafers. In the near term, chip-to-chip and chip-to-wafer integration may offer high yield, high flexibility, and high performance with added time-to-market advantages. In this work, results are reported for 3D integration after using a chip-to-wafer assembly process using 3D chip-stacking technology and fine-pitch interconnects with lead-free solder. Stacks of up to six dies were assembled and characterized using lead-free solder interconnections that were less than 6 µm in height. The average resistance of the TSV including the lead-free solder interconnect was as low as 21 mΩ.