3D CMOS-memristor hybrid circuits: devices, integration, architecture, and applications

  • Authors:
  • Kwang-Ting Tim Cheng;Dmitri B. Strukov

  • Affiliations:
  • University of California, Santa Barbara, CA, USA;University of California, Santa Barbara, CA, USA

  • Venue:
  • Proceedings of the 2012 ACM international symposium on International Symposium on Physical Design
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we give an overview of our recent research efforts on monolithic 3D integration of CMOS and memristive nanodevices. These hybrid circuits combine a CMOS subsystem with several layers of nanowire crossbars, consisting of arrays of two-terminal memristors, all connected by an area-distributed interface between the CMOS subsystem and the crossbars. This approach combines the advantages of CMOS technology, including its high flexibility, functionality and yield, with the extremely high density of nanowires, nanodevices and interface vias. As a result, the 3D hybrids can overcome limitations pertinent to other 3D integration techniques (such as through-silicon vias) and enable 3D circuits with unprecedented memory density (up to 1014 bits on a single 1-cm2 chip) and aggregate interlayer communication bandwidth (up to 1018 bits per second per cm2) at manageable power dissipation. Such performance represents a significant step towards addressing the most pressing needs of modern compact electronic systems.