Verification of orchestration systems using compositional partial order reduction

  • Authors:
  • Tian Huat Tan;Yang Liu;Jun Sun;Jin Song Dong

  • Affiliations:
  • NUS Graduate School for Integrative Sciences and Engineering;School of Computing, National University of Singapore;Singapore University of Technology and Design;School of Computing, National University of Singapore

  • Venue:
  • ICFEM'11 Proceedings of the 13th international conference on Formal methods and software engineering
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Orc is a computation orchestration language which is designed to specify computational services, such as distributed communication and data manipulation, in a concise and elegant way. Four concurrency primitives allow programmers to orchestrate site calls to achieve a goal, while managing timeouts, priorities, and failures. To guarantee the correctness of Orc model, effective verification support is desirable. Orc has a highly concurrent semantics which introduces the problem of state-explosion to search-based verification methods like model checking. In this paper, we present a new method, called Compositional Partial Order Reduction (CPOR), which aims to provide greater state-space reduction than classic partial order reduction methods in the context of hierarchical concurrent processes. Evaluation shows that CPOR is more effective in reducing the state space than classic partial order reduction methods.