An introduction to GPU accelerated surgical simulation

  • Authors:
  • Thomas Sangild Sørensen;Jesper Mosegaard

  • Affiliations:
  • Centre for Advanced Visualisation and Interaction;Department of Computer Science, University of Aarhus, Denmark

  • Venue:
  • ISBMS'06 Proceedings of the Third international conference on Biomedical Simulation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern graphics processing units (GPUs) have recently become fully programmable. Thus a powerful and cost-efficient new computational platform for surgical simulations has emerged. A broad selection of publications has shown that scientific computations obtain a significant speedup if ported from the CPU to the GPU. To take advantage of the GPU however, one must understand the limitations inherent in its design and devise algorithms accordingly. We have observed that many researchers with experience in surgical simulation find this a significant hurdle to overcome. To facilitate the transition from CPU- to GPU-based simulations, we review the most important concepts and data structures required to realise two popular deformable models on the GPU: the finite element model and the spring-mass model