Using DPLL for efficient OBDD construction

  • Authors:
  • Jinbo Huang;Adnan Darwiche

  • Affiliations:
  • Computer Science Department, University of California, Los Angeles;Computer Science Department, University of California, Los Angeles

  • Venue:
  • SAT'04 Proceedings of the 7th international conference on Theory and Applications of Satisfiability Testing
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

The DPLL procedure has found great success in SAT, where search terminates on the first solution discovered. We show that this procedure is equally promising in a problem where exhaustive search is used, given that it is augmented with appropriate caching. Specifically, we propose two DPLL-based algorithms that construct OBDDs for CNF formulas. These algorithms have a worst-case complexity that is linear in the number of variables and size of the CNF, and exponential only in the cutwidth or pathwidth of the variable ordering. We show how modern SAT techniques can be harnessed by implementing the algorithms on top of an existing SAT solver. We discuss the advantage of this new construction method over the traditional approach, where OBDDs for subsets of the CNF formula are built and conjoined. Our experiments indicate that on many CNF benchmarks, the new method runs orders of magnitude faster than a comparable implementation of the traditional method.