Visually defining and querying consistent multi-granular clinical temporal abstractions

  • Authors:
  • Carlo Combi;Barbara Oliboni

  • Affiliations:
  • Department of Computer Science, University of Verona, Ca' Vignal 2, Strada le Grazie 15, I-37134 Verona, VR, Italy;Department of Computer Science, University of Verona, Ca' Vignal 2, Strada le Grazie 15, I-37134 Verona, VR, Italy

  • Venue:
  • Artificial Intelligence in Medicine
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Objective: The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e., high level patterns derived from several time-stamped raw data. In particular, we focus on the visual specification of consistent temporal abstractions with different granularities and on the visual composition of different temporal abstractions for querying clinical databases. Background: Temporal abstractions on clinical data provide a concise and high-level description of temporal raw data, and a suitable way to support decision making. Granularities define partitions on the time line and allow one to represent time and, thus, temporal clinical information at different levels of detail, according to the requirements coming from the represented clinical domain. The visual representation of temporal information has been considered since several years in clinical domains. Proposed visualization techniques must be easy and quick to understand, and could benefit from visual metaphors that do not lead to ambiguous interpretations. Recently, physical metaphors such as strips, springs, weights, and wires have been proposed and evaluated on clinical users for the specification of temporal clinical abstractions. Visual approaches to boolean queries have been considered in the last years and confirmed that the visual support to the specification of complex boolean queries is both an important and difficult research topic. Methodology: We propose and describe a visual language for the definition of temporal abstractions based on a set of intuitive metaphors (striped wall, plastered wall, brick wall), allowing the clinician to use different granularities. A new algorithm, underlying the visual language, allows the physician to specify only consistent abstractions, i.e., abstractions not containing contradictory conditions on the component abstractions. Moreover, we propose a visual query language where different temporal abstractions can be composed to build complex queries: temporal abstractions are visually connected through the usual logical connectives AND, OR, and NOT. Results: The proposed visual language allows one to simply define temporal abstractions by using intuitive metaphors, and to specify temporal intervals related to abstractions by using different temporal granularities. The physician can interact with the designed and implemented tool by point-and-click selections, and can visually compose queries involving several temporal abstractions. The evaluation of the proposed granularity-related metaphors consisted in two parts: (i) solving 30 interpretation exercises by choosing the correct interpretation of a given screenshot representing a possible scenario, and (ii) solving a complex exercise, by visually specifying through the interface a scenario described only in natural language. The exercises were done by 13 subjects. The percentage of correct answers to the interpretation exercises were slightly different with respect to the considered metaphors (54.4 - striped wall, 73.3 - plastered wall, 61 - brick wall, and 61 - no wall), but post hoc statistical analysis on means confirmed that differences were not statistically significant. The result of the user's satisfaction questionnaire related to the evaluation of the proposed granularity-related metaphors ratified that there are no preferences for one of them. The evaluation of the proposed logical notation consisted in two parts: (i) solving five interpretation exercises provided by a screenshot representing a possible scenario and by three different possible interpretations, of which only one was correct, and (ii) solving five exercises, by visually defining through the interface a scenario described only in natural language. Exercises had an increasing difficulty. The evaluation involved a total of 31 subjects. Results related to this evaluation phase confirmed us about the soundness of the proposed solution even in comparison with a well known proposal based on a tabular query form (the only significant difference is that our proposal requires more time for the training phase: 21min versus 14min). Discussion and conclusions: In this work we have considered the issue of visually composing and querying temporal clinical patient data. In this context we have proposed a visual framework for the specification of consistent temporal abstractions with different granularities and for the visual composition of different temporal abstractions to build (possibly) complex queries on clinical databases. A new algorithm has been proposed to check the consistency of the specified granular abstraction. From the evaluation of the proposed metaphors and interfaces and from the comparison of the visual query language with a well known visual method for boolean queries, the soundness of the overall system has been confirmed; moreover, pros and cons and possible improvements emerged from the comparison of different visual metaphors and solutions.