Manipulation of field of view for hand-held virtual reality

  • Authors:
  • Jane Hwang;Jaehoon Jung;Gerard J. Kim

  • Affiliations:
  • Dept. of Computer Science and Engineering, POSTECH, Pohang, Korea;Dept. of Computer Science and Engineering, POSTECH, Pohang, Korea;Dept. of Computer Science and Engineering, Korea University, Seoul, Korea

  • Venue:
  • ICAT'06 Proceedings of the 16th international conference on Advances in Artificial Reality and Tele-Existence
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Today, hand-held computing and media devices are commonly used in our everyday lives. This paper assesses the viability of hand-held devices as effective platforms for “virtual reality.” Intuitively, the narrow field of view of hand-held devices is a natural candidate factor against achieving an effective immersion. In this paper, we show two ways of manipulating the visual field of view (perceived or real), in hopes of overcoming this factor. Our study has revealed that when a motion-based interaction was used, the FOV perceived by the user (and presence) for the small hand-held device was significantly greater than the actual. The other method is to implement dynamic rendering in which the FOV is adjusted depending on the viewing position and distance. Although not formally tested, the second method is expected to bring about higher focused attention (and thus immersion) and association of the visual feedback with one’s proprioception. The paper demonstrates the distinct possibility of realizing reasonable virtual reality even with devices with a small visual FOV and limited processing power through multimodal compensation.