PSnAP: accurate synthetic address streams through memory profiles

  • Authors:
  • Catherine Mills Olschanowsky;Mustafa M. Tikir;Laura Carrington;Allan Snavely

  • Affiliations:
  • Department of Computer Science and Engineering, University of California at San Diego;San Diego Supercomputer Center;San Diego Supercomputer Center;,Department of Computer Science and Engineering, University of California at San Diego

  • Venue:
  • LCPC'09 Proceedings of the 22nd international conference on Languages and Compilers for Parallel Computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Memory address traces are an important information source; they drive memory simulations for performance modeling, systems design and application tuning. For long running applications, the direct use of an address trace is complicated by its size. Previous attempts to reduce trace size incurred a substantial penalty with respect to trace accuracy. We propose a novel method of memory profiling that enables the generation of highly accurate synthetic traces with space requirements typically under 1% of the original traces. We demonstrate the synthetic trace accuracy in terms of cache hit rates, spatial-temporal locality scores and locality surfaces. Simulated cache hit rates from synthetic traces are within 3.5% of observed and on average are within 1.0% for L1 cache. Our profiles are on average 60 times smaller than compressed traces. The combination of small profile sizes and high similarity to original traces makes our technique uniquely applicable to performance modeling and trace driven simulation of large-scale parallel scientific applications.