Self-organized routing for wireless microsensor networks

  • Authors:
  • A. Rogers;E. David;N. R. Jennings

  • Affiliations:
  • Sch. of Electron. & Comput. Sci., Univ. of Southampton, UK;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we develop an energy-aware self-organized routing algorithm for the networking of simple battery-powered wireless microsensors (as found, for example, in security or environmental monitoring applications). In these networks, the battery life of individual sensors is typically limited by the power required to transmit their data to a receiver or sink. Thus, effective network-routing algorithms allow us to reduce this power and extend both the lifetime and the coverage of the sensor network as a whole. However, implementing such routing algorithms with a centralized controller is undesirable due to the physical distribution of the sensors, their limited localization ability, and the dynamic nature of such networks (given that sensors may fail, move, or be added at any time and the communication links between sensors are subject to noise and interference). Against this background, we present a distributed mechanism that enables individual sensors to follow locally selfish strategies, which, in turn, result in the self-organization of a routing network with desirable global properties. We show that our mechanism performs close to the optimal solution (as computed by a centralized optimizer), it deals adaptively with changing sensor numbers and topology, and it extends the useful life of the network by a factor of three over the traditional approach.