Towards energy-efficient database cluster design

  • Authors:
  • Willis Lang;Stavros Harizopoulos;Jignesh M. Patel;Mehul A. Shah;Dimitris Tsirogiannis

  • Affiliations:
  • University of Wisconsin;Nou Data;University of Wisconsin;Nou Data;Microsoft Corp.

  • Venue:
  • Proceedings of the VLDB Endowment
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Energy is a growing component of the operational cost for many "big data" deployments, and hence has become increasingly important for practitioners of large-scale data analysis who require scale-out clusters or parallel DBMS appliances. Although a number of recent studies have investigated the energy efficiency of DBMSs, none of these studies have looked at the architectural design space of energy-efficient parallel DBMS clusters. There are many challenges to increasing the energy efficiency of a DBMS cluster, including dealing with the inherent scaling inefficiency of parallel data processing, and choosing the appropriate energy-efficient hardware. In this paper, we experimentally examine and analyze a number of key parameters related to these challenges for designing energy-efficient database clusters. We explore the cluster design space using empirical results and propose a model that considers the key bottlenecks to energy efficiency in a parallel DBMS. This paper represents a key first step in designing energy-efficient database clusters, which is increasingly important given the trend toward parallel database appliances.