Analyzing the energy efficiency of a database server

  • Authors:
  • Dimitris Tsirogiannis;Stavros Harizopoulos;Mehul A. Shah

  • Affiliations:
  • University of Toronto, Toronto, ON, Canada;HP Labs, Palo Alto, CA, USA;HP Labs, Palo Alto, CA, USA

  • Venue:
  • Proceedings of the 2010 ACM SIGMOD International Conference on Management of data
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Rising energy costs in large data centers are driving an agenda for energy-efficient computing. In this paper, we focus on the role of database software in affecting, and, ultimately, improving the energy efficiency of a server. We first characterize the power-use profiles of database operators under different configuration parameters. We find that common database operations can exercise the full dynamic power range of a server, and that the CPU power consumption of different operators, for the same CPU utilization, can differ by as much as 60%. We also find that for these operations CPU power does not vary linearly with CPU utilization. We then experiment with several classes of database systems and storage managers, varying parameters that span from different query plans to compression algorithms and from physical layout to CPU frequency and operating system scheduling. Contrary to what recent work has suggested, we find that within a single node intended for use in scale-out (shared-nothing) architectures, the most energy-efficient configuration is typically the highest performing one. We explain under which circumstances this is not the case, and argue that these circumstances do not warrant a retargeting of database system optimization goals. Further, our results reveal opportunities for cross-node energy optimizations and point out directions for new scale-out architectures.