CensorSpoofer: asymmetric communication using IP spoofing for censorship-resistant web browsing

  • Authors:
  • Qiyan Wang;Xun Gong;Giang T.K. Nguyen;Amir Houmansadr;Nikita Borisov

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Texas at Austin, Austin, TX, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA

  • Venue:
  • Proceedings of the 2012 ACM conference on Computer and communications security
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

A key challenge in censorship-resistant web browsing is being able to direct legitimate users to redirection proxies while preventing censors, posing as insiders, from discovering their addresses and blocking them. We propose a new framework for censorship-resistant web browsing called CensorSpoofer that addresses this challenge by exploiting the asymmetric nature of web browsing traffic and making use of IP spoofing. CensorSpoofer de-couples the upstream and downstream channels, using a low-bandwidth indirect channel for delivering outbound requests (URLs) and a high-bandwidth direct channel for downloading web content. The upstream channel hides the request contents using steganographic encoding within Email or instant messages, whereas the downstream channel uses IP address spoofing so that the real address of the proxies is not revealed either to legitimate users or censors. We built a proof-of-concept prototype that uses encrypted VoIP for this downstream channel and demonstrated the feasibility of using the CensorSpoofer framework in a realistic environment.