Direct isosurface extraction from scattered volume data

  • Authors:
  • Paul Rosenthal;Lars Linsen

  • Affiliations:
  • Department of Mathematics and Computer Science, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany;Department of Mathematics and Computer Science, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany

  • Venue:
  • EUROVIS'06 Proceedings of the Eighth Joint Eurographics / IEEE VGTC conference on Visualization
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Isosurface extraction is a standard visualization method for scalar volume data and has been subject to research for decades. Nevertheless, to our knowledge, no isosurface extraction method exists that directly extracts surfaces from scattered volume data without 3D mesh generation or reconstruction over a structured grid. We propose a method based on spatial domain partitioning using a kd-tree and an indexing scheme for efficient neighbor search. Our approach consists of a geometry extraction and a rendering step. The geometry extraction step computes points on the isosurface by linearly interpolating between neighboring pairs of samples. The neighbor information is retrieved by partitioning the 3D domain into cells using a kd-tree. The cells are merely described by their index and bitwise index operations allow for a fast determination of potential neighbors. We use an angle criterion to select appropriate neighbors from the small set of candidates. The output of the geometry step is a point cloud representation of the isosurface. The final rendering step uses point-based rendering techniques to visualize the point cloud. Our direct isosurface extraction algorithm for scattered volume data produces results of quality close to the results from standard isosurface extraction algorithms for gridded volume data (like marching cubes). In comparison to 3D mesh generation algorithms (like Delaunay tetrahedrization), our algorithm is about one order of magnitude faster for the examples used in this paper.