Learning multi-scale block local binary patterns for face recognition

  • Authors:
  • Shengcai Liao;Xiangxin Zhu;Zhen Lei;Lun Zhang;Stan Z. Li

  • Affiliations:
  • National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China

  • Venue:
  • ICB'07 Proceedings of the 2007 international conference on Advances in Biometrics
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a novel representation, calledMultiscale Block Local Binary Pattern (MB-LBP), and apply it to face recognition. The Local Binary Pattern (LBP) has been proved to be effective for image representation, but it is too local to be robust. In MB-LBP, the computation is done based on average values of block subregions, instead of individual pixels. In this way, MB-LBP code presents several advantages: (1) It ismore robust than LBP; (2) it encodes not only microstructures but also macrostructures of image patterns, and hence provides a more complete image representation than the basic LBP operator; and (3) MB-LBP can be computed very efficiently using integral images. Furthermore, in order to reflect the uniform appearance of MB-LBP, we redefine the uniform patterns via statistical analysis. Finally, AdaBoost learning is applied to select most effective uniform MB-LBP features and construct face classifiers. Experiments on Face Recognition Grand Challenge (FRGC) ver2.0 database show that the proposed MB-LBP method significantly outperforms other LBP based face recognition algorithms.