Design of a robust neural network-based tracking controller for a class of electrically driven nonholonomic mechanical systems

  • Authors:
  • Hui-Min Yen;Tzuu-Hseng S. Li;Yeong-Chan Chang

  • Affiliations:
  • Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan, ROC;Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan, ROC;Department of Electrical Engineering, Kun-Shan University, 949 Da-Wan Road, Yung-Kang District, Tainan 71003, Taiwan, ROC

  • Venue:
  • Information Sciences: an International Journal
  • Year:
  • 2013

Quantified Score

Hi-index 0.07

Visualization

Abstract

This paper addresses the problem of designing robust tracking controls for a class of uncertain nonholonomic systems actuated by brushed direct current (DC) motors. This class of electrically driven nonholonomic mechanical systems can be perturbed by plant uncertainties, unmodeled time-varying perturbations, and external disturbances. An adaptive neural network-based dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error is as small as possible. Consequently, for practical applications, the intelligent robust tracking control scheme developed here can be employed to handle a broader class of electrically driven nonholonomic systems in the presence of high-degree time-varying uncertainties. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.