Physically-based dye advection for flow visualization

  • Authors:
  • Guo-Shi Li;Xavier Tricoche;Charles Hansen

  • Affiliations:
  • Scientific Computing and Imaging Institute, School of Computing, University of Utah;Department of Computer Science, Purdue University;Scientific Computing and Imaging Institute, School of Computing, University of Utah

  • Venue:
  • EuroVis'08 Proceedings of the 10th Joint Eurographics / IEEE - VGTC conference on Visualization
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dye advection is widely used in experimental flow analysis but has seen less use for visualization in computational fluid dynamics. One possible reason for this disconnect is the inaccuracy of the texture-based approach, which is prone to artifacts caused by numeric diffusion and mass fluctuation. In this paper, we introduce a novel 2D dye advection scheme for flow visualization based on the concept of control volume analysis typically used in computational fluid dynamics. The evolution of dye patterns in the flow field is achieved by advecting individual control volumes, which collectively cover the entire spatial domain. The local variation of dye material, represented as a piecewise quasi-parabolic function, is integrated within each control volume resulting in mass conserving transport without excessive numerical diffusion. Due to its physically based formulation, this approach is capable of conveying intricate flow structures not shown in the traditional dye advection schemes while avoiding visual artifacts.