Prius: generic hybrid trace compression for wireless sensor networks

  • Authors:
  • Vinaitheerthan Sundaram;Patrick Eugster;Xiangyu Zhang

  • Affiliations:
  • Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN

  • Venue:
  • Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Several diagnostic tracing techniques (e.g., event, power, and control-flow tracing) have been proposed for run-time debugging and postmortem analysis of wireless sensor networks (WSNs). Traces generated by such techniques can become large, defying the harsh resource constraints of WSNs. Compression is a straightforward candidate to reduce trace sizes, yet is challenged by the same resource constraints. Established trace compression algorithms perform unsatisfactorily under these constraints. We propose Prius, a novel hybrid (offline/online) trace compression technique that enables application of established trace compression algorithms for WSNs and achieves high compression rates and significant energy savings. We have implemented such hybrid versions of two established compression techniques for TinyOS and evaluated them on various applications. Prius respects the resource constraints of WSNs (5% average program memory overhead) whilst reducing energy consumption on average by 46% and 49% compared to straightforward online adaptations of established compression algorithms and the state-of-the-art trace-specific compression algorithm respectively.