A near-optimal algorithm for shortest paths among curved obstacles in the plane

  • Authors:
  • John Hershberger;Subhash Suri;Hakan Yıldız

  • Affiliations:
  • Mentor Graphics Corporation, Wilsonville, OR, USA;University of California, Santa Barbara, Santa Barbara, CA, USA;University of California, Santa Barbara, Santa Barbara, CA, USA

  • Venue:
  • Proceedings of the twenty-ninth annual symposium on Computational geometry
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose an algorithm for the problem of computing shortest paths among curved obstacles in the plane. If the obstacles have O(n) description complexity, then the algorithm runs in O(n log n) time plus a term dependent on the properties of the boundary arcs. Specifically, if the arcs allow a certain kind of bisector intersection to be computed in constant time, or even in O(log n) time, then the running time of the overall algorithm is O(n log n). If the arcs support only constant-time tangent, intersection, and length queries, as is customarily assumed, then the algorithm computes an approximate shortest path, with relative error ε, in time O(n log n + n log 1/ε). In fact, the algorithm computes an approximate shortest path map, a data structure with O(n log n) size, that allows it to report the (approximate) length of a shortest path from a fixed source point to any query point in the plane in O(log n) time.