Is TSV-based 3D integration suitable for inter-die memory repair?

  • Authors:
  • Mihai Lefter;George R. Voicu;Mottaqiallah Taouil;Marius Enachescu;Said Hamdioui;Sorin D. Cotofana

  • Affiliations:
  • Delft University of Technology, Delft, The Netherlands;Delft University of Technology, Delft, The Netherlands;Delft University of Technology, Delft, The Netherlands;Delft University of Technology, Delft, The Netherlands;Delft University of Technology, Delft, The Netherlands;Delft University of Technology, Delft, The Netherlands

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we address lower level issues related to 3D inter-die memory repair in an attempt to evaluate the actual potential of this approach for current and foreseeable technology developments. We propose several implementation schemes both for inter-die row and column repair and evaluate their impact in terms of area and delay. Our analysis suggests that current state-of-the-art TSV dimensions allow inter-die column repair schemes at the expense of reasonable area overhead. For row repair, however, most memory configurations require TSV dimensions to scale down at least with one order of magnitude in order to make this approach a possible candidate for 3D memory repair. We also performed a theoretical analysis of the implications of the proposed 3D repair schemes on the memory access time, which indicates that no substantial delay overhead is expected and that many delay versus energy consumption tradeoffs are possible.