Utility-based acceleration of multithreaded applications on asymmetric CMPs

  • Authors:
  • José A. Joao;M. Aater Suleman;Onur Mutlu;Yale N. Patt

  • Affiliations:
  • The University of Texas at Austin, Austin, TX;Flux7 Consulting, Austin, TX and The University of Texas at Austin, Austin, TX;Carnegie Mellon University, Pittsburgh, PA;The University of Texas at Austin, Austin, TX

  • Venue:
  • Proceedings of the 40th Annual International Symposium on Computer Architecture
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Asymmetric Chip Multiprocessors (ACMPs) are becoming a reality. ACMPs can speed up parallel applications if they can identify and accelerate code segments that are critical for performance. Proposals already exist for using coarse-grained thread scheduling and fine-grained bottleneck acceleration. Unfortunately, there have been no proposals offered thus far to decide which code segments to accelerate in cases where both coarse-grained thread scheduling and fine-grained bottleneck acceleration could have value. This paper proposes Utility-Based Acceleration of Multithreaded Applications on Asymmetric CMPs (UBA), a cooperative software/hardware mechanism for identifying and accelerating the most likely critical code segments from a set of multithreaded applications running on an ACMP. The key idea is a new Utility of Acceleration metric that quantifies the performance benefit of accelerating a bottleneck or a thread by taking into account both the criticality and the expected speedup. UBA outperforms the best of two state-of-the-art mechanisms by 11% for single application workloads and by 7% for two-application workloads on an ACMP with 52 small cores and 3 large cores.