Efficient decomposition of polygons into L-shapes with application to VLSI layouts

  • Authors:
  • Mario A. Lopez;Dinesh P. Mehta

  • Affiliations:
  • Univ. of Denver, Denver, CO;Univ. of Tennessee Space Institute, Tullahoma

  • Venue:
  • ACM Transactions on Design Automation of Electronic Systems (TODAES)
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present two practical algorithms for partitioning circuit components represented by rectilinear polygons so that they can be stored using the L-shaped corner stitching data structure; that is, our algorithms decompose a simple polygon into a set of nonoverlapping L-shapes and rectangles by using horizontal cuts only. The more general of our algorithms computes and optimal configuration for a wide variety of optimization functions, whereas the other computes a minimum configuration of rectangles and L-shapes. Both algorithms run in O(n + h log h time, where n is the number of vertices in the polygon and h is the number of H-pairs. Because for VLSI data h is small, in practice these algorithms are linear in n. Experimental results on actual VLSI data compare our algorithms and demonstrate the gains in performance for corner stitching (as measured by different objective functions) obtained by using them instead of more traditional rectangular partitioning algorithms.