Circuit partitioning with complex resource constraints in FPGAs

  • Authors:
  • Huiqun Liu;Kai Zhu;D. F. Wong

  • Affiliations:
  • Department of Computer Sciences, University of Texas at Austin, TX;Actel Corporation, 955 East Arques Avenue, Sunnyvale, CA;Department of Computer Sciences, University of Texas at Austin, TX

  • Venue:
  • FPGA '98 Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present an algorithm for circuit partitioning with complex resource constraints in large FPGAs. Traditional partitioning methods estimate the capacity of an FPGA device by counting the number of logic blocks, however this is not accurate with the increasing capacity and diverse resource types in the new FPGA architectures. We propose a network flow based method to optimally check whether a circuit or a sub-circuit is feasible for a set of available heterogeneous resources. The feasibility checking procedure is integrated in the FM-based algorithm for circuit partitioning. Incremental flow technique is employed for efficient implementations. Experimental results on the MCNC benchmark circuits show that our partitioning algorithm not only yields good results, but also is efficient. Our algorithm for partitioning with complex resource constraints is applicable for both multiple FPGA designs (e.g. logic emulation systems) and partitioning-based placement algorithms for a single large hierarchical FPGA (e.g. Actel's ES6500 FPGA family).