The interactive performance of SLIM: a stateless, thin-client architecture

  • Authors:
  • Brian K. Schmidt;Monica S. Lam;J. Duane Northcutt

  • Affiliations:
  • Computer Science Department, Stanford University;Computer Science Department, Stanford University;Sun Microsystems Laboratories

  • Venue:
  • Proceedings of the seventeenth ACM symposium on Operating systems principles
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Taking the concept of thin clients to the limit, this paper proposes that desktop machines should just be simple, stateless I/O devices (display, keyboard, mouse, etc.) that access a shared pool of computational resources over a dedicated interconnection fabric --- much in the same way as a building's telephone services are accessed by a collection of handset devices. The stateless desktop design provides a useful mobility model in which users can transparently resume their work on any desktop console.This paper examines the fundamental premise in this system design that modern, off-the-shelf interconnection technology can support the quality-of-service required by today's graphical and multimedia applications. We devised a methodology for analyzing the interactive performance of modern systems, and we characterized the I/O properties of common, real-life applications (e.g. Netscape, streaming video, and Quake) executing in thin-client environments. We have conducted a series of experiments on the Sun Ray™ 1 implementation of this new system architecture, and our results indicate that it provides an effective means of delivering computational services to a workgroup.We have found that response times over a dedicated network are so low that interactive performance is indistinguishable from a dedicated workstation. A simple pixel encoding protocol requires only modest network resources (as little as a 1Mbps home connection) and is quite competitive with the X protocol. Tens of users running interactive applications can share a processor without any noticeable degradation, and many more can share the network. The simple protocol over a 100Mbps interconnection fabric can support streaming video and Quake at display rates and resolutions which provide a high-fidelity user experience.