Essential Algebraic Structure within the AES

  • Authors:
  • Sean Murphy;Matthew J. B. Robshaw

  • Affiliations:
  • -;-

  • Venue:
  • CRYPTO '02 Proceedings of the 22nd Annual International Cryptology Conference on Advances in Cryptology
  • Year:
  • 2002

Quantified Score

Hi-index 0.06

Visualization

Abstract

One difficulty in the cryptanalysis of the Advanced Encryption Standard AES is the tension between operations in the two fields GF(28) and GF(2). This paper outlines a new approach that avoids this conflict. We define a new block cipher, the BES, that uses only simple algebraic operations in GF(28). Yet the AES can be regarded as being identical to the BES with a restricted message space and key space, thus enabling the AES to be realised solely using simple algebraic operations in one field GF(28). This permits the exploration of the AES within a broad and rich setting. One consequence is that AES encryption can be described by an extremely sparse overdetermined multivariate quadratic system over GF(28), whose solution would recover an AES key.