A very compact "Perfectly masked" S-box for AES

  • Authors:
  • D. Canright;Lejla Batina

  • Affiliations:
  • Applied Math., Naval Postgraduate School, Monterey, CA;K.U. Leuven ESAT/COSIC, Leuven-Heverlee, Belgium

  • Venue:
  • ACNS'08 Proceedings of the 6th international conference on Applied cryptography and network security
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Implementations of the Advanced Encryption Standard (AES), including hardware applications with limited resources (e.g., smart cards), may be vulnerable to "side-channel attacks" such as differential power analysis. One countermeasure against such attacks is adding a random mask to the data; this randomizes the statistics of the calculation at the cost of computing "mask corrections." The single nonlinear step in each AES round is the "S-box" (involving a Galois inversion), which incurs the majority of the cost for mask corrections. Oswald et al.[1] showed how the "tower field" representation allows maintaining an additive mask throughout the Galois inverse calculation. This work applies a similar masking strategy to the most compact (unmasked) S-box to date[2]. The result is the most compact masked S-box so far, with "perfect masking" (by the definition of Blömer[3]) giving suitable implementations immunity to first-order differential side-channel attacks.