Algorithms Promoting the Use of Dual Supply Voltages for Power-Driven Designs

  • Authors:
  • Chingwei Yeh;Min-Cheng Chang;Yin-Shuin Kang

  • Affiliations:
  • -;-;-

  • Venue:
  • ARVLSI '99 Proceedings of the 20th Anniversary Conference on Advanced Research in VLSI
  • Year:
  • 1999

Quantified Score

Hi-index 0.01

Visualization

Abstract

One recent approach for power reduction is to employ different supply voltages for different parts of a design. This paper presents optimization methods that promote the use of dual supply voltages for power-driven designs. We first propose an iterative gate sizing and voltage scaling paradigm that progressively scales down the supply voltage under fixed timing constraint. Then, we propose a new physical layout style that supports dual supply voltages for cell-based designs. The new layout style can be automatically generated via a simulated annealing based placement algorithm. Experimental results using the MCNC benchmark circuits show that the proposed techniques produce very encouraging results.