High level compilation for fine grained FPGAs

  • Authors:
  • M. Gokhale;D. Gomersall

  • Affiliations:
  • -;-

  • Venue:
  • FCCM '97 Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

The authors present an integrated tool set to generate highly optimized hardware computation blocks from a C language subset. By starting with a C language description of the algorithm, they address the problem of making FPGA processors accessible to programmers as opposed to hardware designers. Their work is specifically targeted to fine grained FPGAs such as the National Semiconductor CLAy/sup TM/ FPGA family. Such FPGAs exhibit extremely high performance on regular data path circuits, which are more prevalent in computationally oriented hardware applications. Dense packing of data path functional elements makes it possible to fit the computation on one or a small number of chips, and the use of local routing resources makes it possible to clock the chip at a high rate. By developing a lower level tool suite that exploits the regular, geometric nature of fine grained FPGAs, and mapping the compiler output to this tool suite, they greatly improve performance over traditional high level synthesis to fine grained FPGAs.