An adaptive cryptographic engine for internet protocol security architectures

  • Authors:
  • Andreas Dandalis;Viktor K. Prasanna

  • Affiliations:
  • Intel Corporation, Hillsboro, OR;University of Southern California, Los Angeles, CA

  • Venue:
  • ACM Transactions on Design Automation of Electronic Systems (TODAES)
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Architectures that implement the Internet Protocol Security (IPSec) standard have to meet the enormous computing demands of cryptographic algorithms. In addition, IPSec architectures have to be flexible enough to adapt to diverse security parameters. This article proposes an FPGA-based Adaptive Cryptographic Engine (ACE) for IPSec architectures. By taking advantage of FPGA technology, ACE can adapt to diverse security parameters on the fly while providing superior performance compared with software-based solutions. In this paper, we focus on performance issues. A diverse set of private-key cryptographic algorithms is utilized to demonstrate the applicability of the proposed cryptographic engine. The time performance metrics are throughput and key-setup latency. The latency metric is the most important measure for IPSec where a small amount of data is processed per key and key context switching occurs repeatedly. We are not aware of any published results that include extensive key-setup latency results.