Universal Arguments and their Applications

  • Authors:
  • Boaz Barak;Oded Goldreich

  • Affiliations:
  • -;-

  • Venue:
  • CCC '02 Proceedings of the 17th IEEE Annual Conference on Computational Complexity
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We put forward a new type of computationally-sound proof systems, called universal-arguments, which are related but different from both CS-proofs (as defined by Micali) and arguments (as defined by Brassard, Chaum and Crepeau). In particular, we adopt the instance-based prover-efficiency paradigm of CS-proofs, but follow the computational-soundness condition of argument systems (i.e., we consider only cheating strategies that are implementable by polynomial-size circuits).We show that universal-arguments can be constructed based on standard intractability assumptions that refer to polynomial-size circuits (rather than assumptions referring to subexponential-size circuits as used in the construction of CS-proofs). As an application of universal-arguments, we weaken the intractability assumptions used in the recent non-black-box zero-knowledge arguments of Barak. Specifically, we only utilize intractability assumptions that refer to polynomial-size circuits (rather than assumptions referring to circuits of some "nice" super-polynomial size).