Polynomial time approximation schemes for Euclidean TSP and other geometric problems

  • Authors:
  • S. Arora

  • Affiliations:
  • -

  • Venue:
  • FOCS '96 Proceedings of the 37th Annual Symposium on Foundations of Computer Science
  • Year:
  • 1996

Quantified Score

Hi-index 0.01

Visualization

Abstract

We present a polynomial time approximation scheme for Euclidean TSP in /spl Rfr//sup 2/. Given any n nodes in the plane and /spl epsiv/0, the scheme finds a (1+/spl epsiv/)-approximation to the optimum traveling salesman tour in time n/sup 0(1//spl epsiv/)/. When the nodes are in /spl Rfr//sup d/, the running time increases to n(O/spl tilde/(log/sup d-2/n)//spl epsiv//sup d-1/) The previous best approximation algorithm for the problem (due to Christofides (1976)) achieves a 3/2-approximation in polynomial time. We also give similar approximation schemes for a host of other Euclidean problems, including Steiner Tree, k-TSP, Minimum degree-k, spanning tree, k-MST, etc. (This list may get longer; our techniques are fairly general.) The previous best approximation algorithms for all these problems achieved a constant-factor approximation. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as l/sub p/ for p/spl ges/1 or other Minkowski norms).