On trip planning queries in spatial databases

  • Authors:
  • Feifei Li;Dihan Cheng;Marios Hadjieleftheriou;George Kollios;Shang-Hua Teng

  • Affiliations:
  • Computer Science Department, Boston University;Computer Science Department, Boston University;Computer Science Department, Boston University;Computer Science Department, Boston University;Computer Science Department, Boston University

  • Venue:
  • SSTD'05 Proceedings of the 9th international conference on Advances in Spatial and Temporal Databases
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we discuss a new type of query in Spatial Databases, called the Trip Planning Query (TPQ). Given a set of points of interest P in space, where each point belongs to a specific category, a starting point S and a destination E, TPQ retrieves the best trip that starts at S, passes through at least one point from each category, and ends at E. For example, a driver traveling from Boston to Providence might want to stop to a gas station, a bank and a post office on his way, and the goal is to provide him with the best possible route (in terms of distance, traffic, road conditions, etc.). The difficulty of this query lies in the existence of multiple choices per category. In this paper, we study fast approximation algorithms for TPQ in a metric space. We provide a number of approximation algorithms with approximation ratios that depend on either the number of categories, the maximum number of points per category or both. Therefore, for different instances of the problem, we can choose the algorithm with the best approximation ratio, since they all run in polynomial time. Furthermore, we use some of the proposed algorithms to derive efficient heuristics for large datasets stored in external memory. Finally, we give an experimental evaluation of the proposed algorithms using both synthetic and real datasets.