Robust correlation of encrypted attack traffic through stepping stones by manipulation of interpacket delays

  • Authors:
  • Xinyuan Wang;Douglas S. Reeves

  • Affiliations:
  • N.C. State University, Raleigh, NC;N.C. State University, Raleigh, NC

  • Venue:
  • Proceedings of the 10th ACM conference on Computer and communications security
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network based intruders seldom attack directly from their own hosts, but rather stage their attacks through intermediate "stepping stones" to conceal their identity and origin. To identify attackers behind stepping stones, it is necessary to be able to correlate connections through stepping stones, even if those connections are encrypted or perturbed by the intruder to prevent traceability.The timing-based approach is the most capable and promising current method for correlating encrypted connections. However, previous timing-based approaches are vulnerable to packet timing perturbations introduced by the attacker at stepping stones. In this paper, we propose a novel watermark-based correlation scheme that is designed specifically to be robust against timing perturbations. The watermark is introduced by slightly adjusting the timing of selected packets of the flow. By utilizing redundancy techniques, we have developed a robust watermark correlation framework that reveals a rather surprising result on the inherent limits of independent and identically distributed (iid) random timing perturbations over sufficiently long flows. We also identify the tradeoffs between timing perturbation characteristics and achievable correlation effectiveness. Experiments show that the new method performs significantly better than existing, passive, timing-based correlation in the presence of random packet timing perturbations.