Self-configuring network traffic generation

  • Authors:
  • Joel Sommers;Paul Barford

  • Affiliations:
  • University of Wisconsin--Madison;University of Wisconsin--Madison

  • Venue:
  • Proceedings of the 4th ACM SIGCOMM conference on Internet measurement
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

The ability to generate repeatable, realistic network traffic is critical in both simulation and testbed environments. Traffic generation capabilities to date have been limited to either simple sequenced packet streams typically aimed at throughput testing, or to application-specific tools focused on, for example, recreating representative HTTP requests. In this paper we describe Harpoon, a new application-independent tool for generating representative packet traffic at the IP flow level. Harpoon generates TCP and UDP packet flows that have the same byte, packet, temporal and spatial characteristics as measured at routers in live environments. Harpoon is distinguished from other tools that generate statistically representative traffic in that it can self-configure by automatically extracting parameters from standard Netflow logs or packet traces. We provide details on Harpoon's architecture and implementation, and validate its capabilities in controlled laboratory experiments using configurations derived from flow and packet traces gathered in live environments. We then demonstrate Harpoon's capabilities in a router benchmarking experiment that compares Harpoon with commonly used throughput test methods. Our results show that the router subsystem load generated by Harpoon is significantly different, suggesting that this kind of test can provide important insights into how routers might behave under actual operating conditions.