Realistic and responsive network traffic generation

  • Authors:
  • Kashi Venkatesh Vishwanath;Amin Vahdat

  • Affiliations:
  • University of California, San Diego, CA;University of California, San Diego, CA

  • Venue:
  • Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents Swing, a closed-loop, network-responsive traffic generator that accurately captures the packet interactions of a range of applications using a simple structural model. Starting from observed traffic at a single point in the network, Swing automatically extracts distributions for user, application, and network behavior. It then generates live traffic corresponding to the underlying models in a network emulation environment running commodity network protocol stacks. We find that the generated traces are statistically similar to the original traces. Further, to the best of our knowledge, we are the first to reproduce burstiness in traffic across a range of timescales using a model applicable to a variety of network settings. An initial sensitivity analysis reveals the importance of capturing and recreating user, application, and network characteristics to accurately reproduce such burstiness. Finally, we explore Swing's ability to vary user characteristics, application properties, and wide-area network conditions to project traffic characteristics into alternate scenarios.