Inherently Workload-Balanced Clustered Microarchitecture

  • Authors:
  • Jaume Abella;Antonio Gonzalez

  • Affiliations:
  • Universitat Politècnica de Catalunya, Barcelona, Spain;Intel Labs, Universitat Politècnica de Catalunya, Spain

  • Venue:
  • IPDPS '05 Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Papers - Volume 01
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The performance of clustered microarchitectures relies on steering schemes that try to find the best trade-off between workload balance and inter-cluster communication penalties. In previously proposed clustered processors, reducing communication penalties and balancing the workload are opposite targets, since improving one usually implies a detriment in the other. In this paper we propose a new clustered microarchitecture that can minimize communication penalties without compromising workload balance. The key idea is to arrange the clusters in a ring topology in such a way that results of one cluster can be forwarded to the neighbor cluster with a very short latency. In this way, minimizing communication penalties is favored when the producer of a value and its consumer are placed in adjacent clusters, which also favors workload balance. The proposed microarchitecture is shown to outperform a state-of-the-art clustered processor. For instance, for an 8-cluster configuration and just one fully pipelined unidirectional bus, 15% speedup is achieved on average for FP programs.