Examining task engagement in sensor-based statistical models of human interruptibility

  • Authors:
  • James Fogarty;Andrew J. Ko;Htet Htet Aung;Elspeth Golden;Karen P. Tang;Scott E. Hudson

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

The computer and communication systems that office workers currently use tend to interrupt at inappropriate times or unduly demand attention because they have no way to determine when an interruption is appropriate. Sensor?based statistical models of human interruptibility offer a potential solution to this problem. Prior work to examine such models has primarily reported results related to social engagement, but it seems that task engagement is also important. Using an approach developed in our prior work on sensor?based statistical models of human interruptibility, we examine task engagement by studying programmers working on a realistic programming task. After examining many potential sensors, we implement a system to log low?level input events in a development environment. We then automatically extract features from these low?level event logs and build a statistical model of interruptibility. By correctly identifying situations in which programmers are non?interruptible and minimizing cases where the model incorrectly estimates that a programmer is non?interruptible, we can support a reduction in costly interruptions while still allowing systems to convey notifications in a timely manner.