Programming by sketching for bit-streaming programs

  • Authors:
  • Armando Solar-Lezama;Rodric Rabbah;Rastislav Bodík;Kemal Ebcioğlu

  • Affiliations:
  • University of California, Berkeley;Massachusetts Institute of Technology;University of California, Berkeley;T.J. Watson Research Center, IBM Corporation

  • Venue:
  • Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper introduces the concept of programming with sketches, an approach for the rapid development of high-performance applications. This approach allows a programmer to write clean and portable reference code, and then obtain a high-quality implementation by simply sketching the outlines of the desired implementation. Subsequently, a compiler automatically fills in the missing details while also ensuring that a completed sketch is faithful to the input reference code. In this paper, we develop StreamBit as a sketching methodology for the important class of bit-streaming programs (e.g., coding and cryptography).A sketch is a partial specification of the implementation, and as such, it affords several benefits to programmer in terms of productivity and code robustness. First, a sketch is easier to write compared to a complete implementation. Second, sketching allows the programmer to focus on exploiting algorithmic properties rather than on orchestrating low-level details. Third, a sketch-aware compiler rejects "buggy" sketches, thus improving reliability while allowing the programmer to quickly evaluate sophisticated implementation ideas.We evaluated the productivity and performance benefits of our programming methodology in a user-study, where a group of novice StreamBit programmers competed with a group of experienced C programmers on implementing a cipher. We learned that, given the same time budget, the ciphers developed in StreamBit ran 2.5x faster than ciphers coded in C. We also produced implementations of DES and Serpent that were competitive with hand optimized implementations available in the public domain.