A low-power bus design using joint repeater insertion and coding

  • Authors:
  • Srinivasa R. Sridhara;Naresh R. Shanbhag

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL;University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • ISLPED '05 Proceedings of the 2005 international symposium on Low power electronics and design
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose joint repeater insertion and crosstalk avoidance coding as a low-power alternative to repeater insertion for global bus design in nanometer technologies. We develop a methodology to calculate the repeater size and separation that minimize the total power dissipation for joint repeater insertion and coding for a specific delay target. This methodology is employed to obtain power vs. delay trade-offs for 130-nm, 90-nm, 65-nm, and 45-nm technology nodes. Using ITRS technology scaling data, we show that proposed technique provides 54%, 67%, and 69% power savings over optimally repeater-inserted 10-mm 32-bit bus at 90-nm, 65-nm, and 45-nm technology nodes, respectively, while achieving the same delay