Memory size computation for multimedia processing applications

  • Authors:
  • Hongwei Zhu;Ilie I. Luican;Florin Balasa

  • Affiliations:
  • University of Illinois at Chicago, Chicago, IL;University of Illinois at Chicago, Chicago, IL;University of Illinois at Chicago, Chicago, IL

  • Venue:
  • ASP-DAC '06 Proceedings of the 2006 Asia and South Pacific Design Automation Conference
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In real-time multimedia processing systems a very large part of the power consumption is due to the data storage and data transfer. Moreover, the area cost is often largely dominated by the memory modules. The computation of the memory size is an important step in the process of designing an optimized (for area and/or power) memory architecture for multimedia processing systems. This paper presents a novel non-scalar approach for computing exactly the memory size in real-time multimedia algorithms. This methodology uses both algebraic techniques specific to the data-flow analysis used in modern compilers, and also recent advances in the theory of integral polyhedra. In contrast with all the previous works which are only estimation methods, this approach performs exact memory computations even for applications with a large number of scalar signals.