SubVirt: Implementing malware with virtual machines

  • Authors:
  • Samuel T. King;Peter M. Chen;Yi-Min Wang;Chad Verbowski;Helen J. Wang;Jacob R. Lorch

  • Affiliations:
  • University of Michigan;University of Michigan;Microsoft Research;Microsoft Research;Microsoft Research;Microsoft Research

  • Venue:
  • SP '06 Proceedings of the 2006 IEEE Symposium on Security and Privacy
  • Year:
  • 2006

Quantified Score

Hi-index 0.02

Visualization

Abstract

Attackers and defenders of computer systems both strive to gain complete control over the system. To maximize their control, both attackers and defenders have migrated to low-level, operating system code. In this paper, we assume the perspective of the attacker, who is trying to run malicious software and avoid detection. By assuming this perspective, we hope to help defenders understand and defend against the threat posed by a new class of rootkits. We evaluate a new type of malicious software that gains qualitatively more control over a system. This new type of malware, which we call a virtual-machine based rootkit (VMBR), installs a virtual-machine monitor underneath an existing operating system and hoists the original operating system into a virtual machine. Virtual-machine based rootkits are hard to detect and remove because their state cannot be accessed by software running in the target system. Further, VMBRs support general-purpose malicious services by allowing such services to run in a separate operating system that is protected from the target system. We evaluate this new threat by implementing two proof-of-concept VMBRs. We use our proof-of-concept VMBRs to subvert Windows XP and Linux target systems, and we implement four example malicious services using the VMBR platform. Last, we use what we learn from our proof-of-concept VMBRs to explore ways to defend against this new threat. We discuss possible ways to detect and prevent VMBRs, and we implement a defense strategy suitable for protecting systems against this threat.