Decision-theoretic exploration of multiProcessor platforms

  • Authors:
  • Giovanni Beltrame;Dario Bruschi;Donatella Sciuto;Cristina Silvano

  • Affiliations:
  • Politecnico di Milano, Milano, Italy;Politecnico di Milano, Milano, Italy;Politecnico di Milano, Milano, Italy;Politecnico di Milano, Milano, Italy

  • Venue:
  • CODES+ISSS '06 Proceedings of the 4th international conference on Hardware/software codesign and system synthesis
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present an efficient technique to perform design space exploration of a multi-processor platform that minimizes the number of simulations needed to identify the power-performance approximate Pareto curve. Instead of using semi-random search algorithms (like simulated annealing, tabu search, genetic algorithms, etc.), we use domain knowledge derived from the platform architecture to set-up exploration as a decision problem. Each action in the decision-theoretic framework corresponds to a change in the platform parameters. Simulation is performed only when information about the probability of action outcomes becomes insufficient for a decision. The algorithm has been tested with two multi-media industrial applications, namely an MPEG4 encoder and an Ogg-Vorbis decoder. Results show that the exploration of the number of processors and two-level cache size and policy, can be performed with less than 15 simulations with 95% accuracy, increasing the exploration speed by one order of magnitude when compared to traditional operation research techniques.