Decomposition of instruction decoders for low-power designs

  • Authors:
  • Wu-An Kuo;Tingting Hwang;Allen C.-H. Wu

  • Affiliations:
  • National Tsing Hua University, Hsinchu, Taiwan;National Tsing Hua University, Hsinchu, Taiwan;National Tsing Hua University, Hsinchu, Taiwan

  • Venue:
  • ACM Transactions on Design Automation of Electronic Systems (TODAES)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

During the execution of processor instruction, decoding the instructions is a major task in identifying instructions and generating control signals for data paths. In this article, we propose two instruction decoder decomposition techniques for low-power designs. First, by tracing program execution sequences, we propose an algorithm that explores the relations between frequently executed instructions. Second, we propose a two-stage low-power decomposition structure for decoding instructions. Experimental results demonstrate that our proposed techniques achieve an average of 34.18% in power reduction and 12.93% in critical-path delay reduction for the instruction decoder.