Adaptive contact probing mechanisms for delay tolerant applications

  • Authors:
  • Wei Wang;Vikram Srinivasan;Mehul Motani

  • Affiliations:
  • National University of Singapore;National University of Singapore;National University of Singapore

  • Venue:
  • Proceedings of the 13th annual ACM international conference on Mobile computing and networking
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In many delay tolerant applications, information is opportunistically exchanged between mobile devices who encounter each other. In order to effect such information exchange, mobile devices must have knowledge of other devices in their vicinity. We consider scenarios in which there is no infrastructure and devices must probe their environment to discover other devices. This can be an extremely energy consuming process and highlights the need for energy conscious contact probing mechanisms. If devices probe very infrequently, they might miss many of their contacts. On the other hand, frequent contact probing might be energy inefficient. In this paper, we investigate the trade-off between the probability of missing a contact and the contact probing frequency. First, via theoretical analysis, we characterize the trade-off between the probability of a missed contact and the contact probing interval for stationary processes. Next, for time varying contact arrival rates, we provide an optimization framework to compute the optimal contact probing interval as a function of the arrival rate. We characterize real world contact patterns via Bluetooth phone contact logging experiments and show that the contact arrival process is self-similar. We design STAR, a contact probing algorithm which adapts to the contact arrival process. Via trace driven simulations on our experimental data, we show that STAR consumes three times less energy when compared to a constant contact probing interval scheme.