Adaptive physics based tetrahedral mesh generation using level sets

  • Authors:
  • J. Teran;Neil Molino;R. Fedkiw;R. Bridson

  • Affiliations:
  • Stanford University, Stanford, CA, USA;Stanford University, Stanford, CA, USA;Stanford University, Stanford, CA, USA;University of British Columbia, Vancouver, BC, Canada

  • Venue:
  • Engineering with Computers
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

We present a tetrahedral mesh generation algorithm designed for the Lagrangian simulation of deformable bodies. The algorithm’s input is a level set (i.e., a signed distance function on a Cartesian grid or octree). First a bounding box of the object is covered with a uniform lattice of subdivision-invariant tetrahedra. The level set is then used to guide a red green adaptive subdivision procedure that is based on both the local curvature and the proximity to the object boundary. The final topology is carefully chosen so that the connectivity is suitable for large deformation and the mesh approximates the desired shape. Finally, this candidate mesh is compressed to match the object boundary. To maintain element quality during this compression phase we relax the positions of the nodes using finite elements, masses and springs, or an optimization procedure. The resulting mesh is well suited for simulation since it is highly structured, has topology chosen specifically for large deformations, and is readily refined if required during subsequent simulation. We then use this algorithm to generate meshes for the simulation of skeletal muscle from level set representations of the anatomy. The geometric complexity of biological materials makes it very difficult to generate these models procedurally and as a result we obtain most if not all data from an actual human subject. Our current method involves using voxelized data from the Visible Male [1] to create level set representations of muscle and bone geometries. Given this representation, we use simple level set operations to rebuild and repair errors in the segmented data as well as to smooth aliasing inherent in the voxelized data.