Thermal modeling for 3D-ICs with integrated microchannel cooling

  • Authors:
  • Hitoshi Mizunuma;Chia-Lin Yang;Yi-Chang Lu

  • Affiliations:
  • National Taiwan University;National Taiwan University;National Taiwan University

  • Venue:
  • Proceedings of the 2009 International Conference on Computer-Aided Design
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Integrated microchannel liquid-cooling technology is envisioned as a viable solution to alleviate an increasing thermal stress imposed by 3D stacked ICs. Thermal modeling for microchannel cooling is challenging due to its complicated thermal-wake effect, a localized temperature wake phenomenon downstream of a heated source in the flow. This paper presents a fast and accurate thermal-wake aware thermal model for integrated microchannel 3D ICs. Validation results show the proposed thermal model achieves more than 400x speed up and only 2.0% error in comparison with a commercial numerical simulation tool. We also demonstrate the use of the proposed thermal model for thermal optimization during the IC placement stage. We find that due to the thermal-wake effect, tiles are placed in the descending order of power magnitude along the flow direction. We also find that modeling thermal-wakes is critical for generating a thermal-aware placement for integrated microchannel-cooled 3D IC. It could result in up to 25°C peak temperature difference according to our experiments.