Reevaluating Amdahl's law in the multicore era

  • Authors:
  • Xian-He Sun;Yong Chen

  • Affiliations:
  • Computer Science Department, Illinois Institute of Technology, United States;Computer Science Department, Illinois Institute of Technology, United States

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Microprocessor architecture has entered the multicore era. Recently, Hill and Marty presented a pessimistic view of multicore scalability. Their analysis was based on Amdahl's law (i.e. fixed-workload condition) and challenged readers to develop better models. In this study, we analyze multicore scalability under fixed-time and memory-bound conditions and from the data access (memory wall) perspective. We use the same hardware cost model of multicore chips used by Hill and Marty, but achieve very different and more optimistic performance models. These models show that there is no inherent, immovable upper bound on the scalability of multicore architectures. These results complement existing studies and demonstrate that multicore architectures are capable of extensive scalability.