Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman

  • Authors:
  • Eike Kiltz

  • Affiliations:
  • CWI Amsterdam, The Netherlands

  • Venue:
  • PKC'07 Proceedings of the 10th international conference on Practice and theory in public-key cryptography
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a practical key encapsulation mechanism with a simple and intuitive design concept. Security against chosen-ciphertext attacks can be proved in the standard model under a new assumption, the Gap Hashed Diffie-Hellman (GHDH) assumption. The security reduction is tight and simple. Secure key encapsulation, combined with an appropriately secure symmetric encryption scheme, yields a hybrid public-key encryption scheme which is secure against chosen-ciphertext attacks. The implied encryption scheme is very efficient: compared to the previously most efficient scheme by Kurosawa and Desmedt [Crypto 2004] it has 128 bits shorter ciphertexts, between 25-50% shorter public/secret keys, and it is slightly more efficient in terms of encryption/decryption speed. Furthermore, our scheme enjoys (the option of) public verifiability of the ciphertexts and it inherits all practical advantages of secure hybrid encryption.