Bimodal biometric person identification system under perturbations

  • Authors:
  • Miguel Carrasco;Luis Pizarro;Domingo Mery

  • Affiliations:
  • Pontificia Universidad Católica de Chile, Santiago, Chile;Faculty of Mathematics and Computer Science, Saarland University, Saarbrücken, Germany;Pontificia Universidad Católica de Chile, Santiago, Chile

  • Venue:
  • PSIVT'07 Proceedings of the 2nd Pacific Rim conference on Advances in image and video technology
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Multibiometric person identification systems play a crucial role in environments where security must be ensured. However, building such systems must jointly encompass a good compromise between computational costs and overall performance. These systems must also be robust against inherent or potential noise on the data-acquisition machinery. In this respect, we proposed a bimodal identification system that combines two inexpensive and widely accepted biometric traits, namely face and voice information. We use a probabilistic fusion scheme at the matching score level, which linearly weights the classification probabilities of each person-class from both face and voice classifiers. The system is tested under two scenarios: a database composed of perturbation-free faces and voices (ideal case), and a database perturbed with variable Gaussian noise, salt-and-pepper noise and occlusions. Moreover, we develop a simple rule to automatically determine the weight parameter between the classifiers via the empirical evidence obtained from the learning stage and the noise level. The fused recognition systems exceeds in all cases the performance of the face and voice classifiers alone.