Estimating array connectivity and applying multi-output node structure in evolutionary design of digital circuits

  • Authors:
  • Jie Li;Shitan Huang

  • Affiliations:
  • Xi'an Microelectronics Technology Institute, Xi'an, Shannxi, China;Xi'an Microelectronics Technology Institute, Xi'an, Shannxi, China

  • Venue:
  • ICES'07 Proceedings of the 7th international conference on Evolvable systems: from biology to hardware
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Array connectivity is an important feature for measuring the efficiency of evolution. Generally, the connectivity is estimated by array geometry and level-back separately. In this paper, a connectivity model based on the path number between the first node and the last node is esteblished. With the help of multinomial coefficient expansion, a formula for estimating array connectivity is presented. By applying this technique, the array geometry and level-back are taken into account simultaneously. Comparison of connectivity within arrays of different geometries and level-backs becomes possible. Enlightened by this approach, a multi-output node structure is developed. This structure promotes the connectivity without increasing the array size. A multi-objective fitness funciton based on power consumption and critical delay of circuits is proposed, which enables evolved circuits to agree with the requirements of applications. Experimental results show that the proposed approach offers flexibility in constructing circuits and thus improves the efficiency of evolutionary design of circuits.