Complexity of 3-D floorplans by analysis of graph cuboidal dual hardness

  • Authors:
  • Renshen Wang;Evangeline Young;Chung-Kuan Cheng

  • Affiliations:
  • University of California, San Diego, La Jolla, CA;The Chinese University of Hong Kong, Shatin N.T. Hong Kong;University of California, San Diego, La Jolla, CA

  • Venue:
  • ACM Transactions on Design Automation of Electronic Systems (TODAES)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Interconnect dominated electronic design stimulates a demand for developing circuits on the third dimension, leading to 3-D integration. Recent advances in chip fabrication technology enable 3-D circuit manufacturing. However, there is still a possible barrier of design complexity in exploiting 3-D technologies. This article discusses the impact of migrating from 2-D to 3-D on the difficulty of floorplanning and placement. By looking at a basic formulation of the graph cuboidal dual problem, we show that the 3-D cases and the 3-layer 2.5-D cases are fundamentally more difficult than the 2-D cases in terms of computational complexity. By comparison among these cases, the intrinsic complexity in 3-D floorplan structures is revealed in the hard-to-decide relations between topological connections and geometrical contacts. The results show possible challenges in the future for physical design and CAD of 3-D integrated circuits.